POF equations aide memoire

Continuity and Bernoulli

$$A_1 V_1 \text{ rho}_1 = A_2 V_2 \text{ rho}_2 = A_3 V_3 \text{ rho}_3$$

Pt = Ps + q

Lift equations

$$L = \frac{1}{2}$$
 rho V^2 S C, or $L = q$ S C, or $L \alpha IAS^2$ S C,

In S&L with a wing of constant area $IAS_1^2 C_{L1} = IAS_2^2 C_{L2}$

Stall speed (new) = Stall speed (old) $x \sqrt{\text{weight new/ weight old}}$

Load factor = lift/weight

Or use three step process between 2 pairs of variables eg $V_{\scriptscriptstyle S}$ and LF :

Step 1 Will answer be larger of smaller (determines respectively if larger or smaller number on top in ratio in step 2)

Step 2 Write equation

eg.
$$V_s$$
 new = V_s old x LF new/LF old

Step 3

Part 1 - I speed a variable? Y/N

Y = Go to part 2

N = Ignore Step 3

Part 2 - Is the speed change known? Y/N

Y = Square the ratio of speeds i.e. (V new/V old)²

N = Square root the ratio i.e $\sqrt{(LF \text{ new/ LF old})}$

Drag equations

$$D = \frac{1}{2}$$
 rho $V^2 S C_D$ or $D = q S C_D$ or $L \alpha IAS^2 S C_D$

Parasite drag αV^2 Induced drag $\alpha 1/V^2$

C_D α C₂/Aspect ratio

Drag is proportional to weight at V_{MD} only, so at V_{MD} $W_{1}/W_{2} = D_{1}/D_{2}$

Aeroplane descriptions

Aspect ratio = span/chord or span²/area (larger than 1)
Taper ratio = tip chord/root chord (smaller than 1)

Climbing

L= W cos &, and LF is less than 1

 $T = D + W \sin \vartheta$ or $Sin \vartheta = (T-D)/W$

At small angles of climb sin & almost equals tan & and therefore,

% gradient = $(T-D)/W \times 100$

Descending

L= W cos &, and LF is less than 1

 $D = T + W \sin \vartheta$ or $Sin \vartheta = (D-T)/W$

% gradient = $(D-T)/W \times 100$

Gliding

% gradient = $D/W \times 100$

gradient = D/L therefore, Glide range = Height x L/D ratio

Turning

Remember V must be in m/s (multiply by 0.5144 or halve it will do to get knots)

 $LF = 1/\cos \phi$

Radius = $V^2/g \tan \phi$ (multiply by 2 for Diameter!)

Rate of turn = TAS/Radius (multiply by 57.3, 60 will do to get °/sec)

Rate 1 turn = 3° /sec ϕ for rate 1 turn = TAS/10 + 7 (TAS is in kts for this)

High Speed Flight

Local speed of sound (LSS or 'a') = 39 \sqrt{K}

Mach number = TAS/LSS

Mach cone angle - Sin μ = 1/Mach number

Stability

Stick force per g = stick force/change in LF from 1 g

Limitations

 V_A new = V_A old $\sqrt{\text{weight new/weight old}}$

Gust Load Factor (GLF) is about the change in LF away from 1g and is proportional to speed

Use the first 2 steps in the '3 Step' method but remember to remove 1g from all load factors used, and once calculated add 1g back on to find actual GLF